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Abstract. This paper presents a novel generalized particle model (GPM)
for problem-solving in multi-agent systems (MAS) in complex environment.!
The complex environment involves multi-type coordination, multi-objective
optimization, multi-degree autonomy, and multi-grain dynamics. The
proposed GPM transforms a problem-solving process in MAS into the
kinematics and dynamics of massive particles in a force-field. The GPA
has many advantages in terms of the large-scale parallelism, the suitabil-
ity for complex environment and the easier implementation with VLSI
hardware technology.
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1 Introduction

Most of approaches currently used to problem-solving in MAS have the fol-
lowing limitations and disadvantages:

e Usually only some simpler types of coordination in MAS, such as cooper-
ation and competition, are taken into consideration. Furthermore, it is assumed
that these kinds of coordination are always bilateral, aware, and conscious be-
havior.

e The MAS simply regards agents to be either completely sclfish or com-
pletely unsclfish.

e The global control, global information, and global objective are always
required, so that it is difficult to realize in real-time the problem-solving in
MAS.

e The influence of the availability of individual agents, such as congestion
degree, failure status and priority level, is not well considered.

e Particularly, it is very difficult to treat the phenomena that randomly and
emergently occur in MAS.

! This work was supported by the National Natural Science Foundation of China under
Grant No.60135010, No.60473044 and No.60073008, the National Key Foundational
R&D Project (973) under Grant No.G1999032707, and the State Key Laboratory
Foundation of Intelligence Technology and System, Tsinghua University.

© A. Gelbukh, C. Ydriez Mdrquez, O. Camacho Nieto (Eds.)
Advances in Artificial Intelligence and Computer Science
Research on Computing Science 14, 2005, pp. 61-68



62  Shuai D., Wang X., Gong R., Liu R.

To overcome the above-mentioned limitations, this paper proposes a novel
generalized particle model (GPM), which transforms the problem-solving procesg
in MAS into the kinematics and dynamics of massive particles in a force-fielq,
The GPA has the following features:

e the ability to formalize typical types of social coordination amnong agents,
including the unilateral, unaware and unconscious coordination;

e the ability to model different autonomy degree of individual agents with
respect to the aggregate utility and personal utility, that is, the dual intentiong
for the whole systems and for agent itsclf;

e the higher parallelism to realize problem-solving in MAS under complex
circumstances and with no global control and no global objective, and without
using overall consistent information;

e the ability to describe the the availability of individual agents;

e the openness to handle the events randomly and emergently occurred during
MAS problem-solving;

2 Generalized Particle Model for MAS
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Fig. 1. The assignment matrix S(t) = [ sik(t) Jnxm of task allocation and resource
assignment in MAS, where s,;(t) = (ai,(t), pi;(t), (i; (2) ).

Consider the task allocation and resource assignment in MAS in complex
environment. Given a finite set G(7) = {G1,+--,Gmm} of m task agents and 8
finite sct A(t) = {Ai1,---,An} of n resource agents in the time session 7, the
resource agent A; provides the task agent G; with resource a;;(t) at time b
and meanwhile the task agent G; offers the payment p;;(t) for unit resource of
resource agent A;. The resource agent A; has the intention strength ¢i;(t) for
task agent G, through social coordinations among agents. We thus obtain an
assignment matrix S(t) = (six(t)]nxm, 8s shown in Fig.1, where s;;(t) = (aij(t)

Dy (t)' CiJ (t))
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Fig. 2. Generalized particle model to optimize the task allocation and resource assign-
ment in MAS.

A gceneralized particle model (GPM) to optimize the task allocation and
resource assignment in MAS is shown in Fig.2, where the particle s in a force-
ficld corresponds to the entry s;x in assignment matrix S. A particle may be
driven by several kinds of forces that are produced by the force-ficld, other
particles and itsclf. The gravitational force produced by the force-ficld tries to
drive a particle to move towards force-ficld boundarics, which embodies the
tendency that a particle pursues maximizing the aggregate bencfit of systems.
The pushing or pulling forces produced by other particles are used to embody
a varicty of coordinations among agents. The self-driving force produced by
a particle itself represents autonomy, personality and availability of individual
agents in MAS. The larger the resultant force on a particle, the faster the motion
of the particle. Based on a common dynamic equation, all the particles may move
concurrently in a force-field. In this way, the GPM transforms the problem-
solving in MAS into kinematics and dynamics of particles in a force-field. For
simplicity and without loss of generality, we suppose that every particle may
move along a vertical direction, that is, there is no horizontal component of
forces on a particle. When all the particles reach their equilibrium states, we
then accordingly obtain the solution to the optimization of task allocation and
resource assignment in MAS.

Definition 1. Let u;x(t) be the utility of particle s;x at time ¢, and let J(t) be
the aggregate utility of all particles. They are defined by

uik(t) = en [ 1= exp [ —(pir(t)pi)(ain(t)ai) ] |; (1)
() = o i:; ijl wik(t) 2)

where 0 < a; < 1, pp and a] arc biascs to embody the activity or availability
of the task agent G; and resource agent A;, respectively.

Definition 2. At time t, the potential encrgy functions P(t) that is related to
the gravitational force of force-field F is defined by

P(t) = ¢%ln ;le é‘:l exp[ —u%.(t) /2¢%] — € Inm n, (3)
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where 0<e<l.

Definition 3. At time t, the potential energy function Q(t) that is rclated to
interactive forces among particles is defined by

Q) = egl | kiz':laik(t) —ri(t) 2

-2k Jo F {1+ exp(=Ciz)) " - 0.5)dz, (4)

where 0 < £ < 1 The r; is the capacity of resource agent A;. Note that the first
term of Q(t) is for the capacity constraints of resource agents, that is realized
through a special interactions among particles. The second term of Q(t) is caused
by social coordinations among agents, where (;x is an intention strength.

Definition 4. The hybrid energy function of the particle s;x at time ¢t is defined
by

Li(t) = 2P ui(t) = 22 7(8) + XD Pt) + 20Q(1). -
(1) (2) 3 4
where 0 < A, ADAD A < q
Definition 5. Suppose that the origin of coordinates is located on the central
line between upper and bottom boundaries of force-field F. Let q,x(t) be the

current vertical coordinate of particle s;x at time t. The dynamic equation for
particle s;x is defined by

[ dgu(t)/dt = ¥(t) + @) (6)

D) = —qe(t) + Y vk(t)  (6a)

|2 (1) = —wiewin(t) (6b)

where v > 1; wix > 0 is a positive weight coefficient; and the v;x(t) is a piecewise
lincar function of g;x(t) defined by

vie(t) = 4 qik(t) if 0< qi(t) <1 (7)
1 1f qlk(t) > 1:

Generalized Particle Model Algorithm (GPMA):

Costep 1. Initiate a;x(to), pir(to) and gix(to) in parallel for i € {1,---,n},k €
{1,---,m}.

Costep 2. By the Eq.(1), calculate the utility u;x(t) at time t in parallel for
every particle s;x in force-field F ;
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Costep 3. Calculate !Pi(‘:)(t) by Eq.(6a), and !Ili(:)(t) by Eq.(6b) in parallel for
every particle s;x . Then compute dg;x(t)/dt in parallel for every particle s;x by
Eq.(6)

Costep 4. Calculate dp;c(t)/dt and da;c(t)/dt in parallel for every particle s,x
by the following Egs.(8) and (9), respectively:

dg:&!!! — _dha () _)\(5) (t)

dp.(t) ik Qik
= DGl + XD A AP I, 3D 2 5P (058
don( = _dluld 5D qu(t)
= AP el 4 AP L A AP L 22 - A5 qin(); (9)

where 0 < )\fi) <1
Costep 5. If dg;x(t)/dt = 0 and du;,(t)/dt = 0 hold for every particle s at time
t, then finish with success; Otherwise, using the obtained dq,.(t)/dt, dpix(t)/dt
and da;x(t)/dt, modify gix(t), pix(t) and a;k(t) in parallel for every particle s;x
respectively by

i (t + O) = qui(t) + 2228 A,

pu(t + O8) = puc(t) + 2 A,

aik(t + At) = a(t) + LA,
then go to Costep 2.

3 Properties of GPMA and Simulations

In this section, we gives the properties, including the correctness, convergency
and stability of the GPM, and give some simulation results. For page limit, the
proofs of all the theorems arc omitted.

Theorem 1. Updating p;x and ax by Eqs.(9), (10), respectively, gives rise to
monotonically decrcasing the hybrid energy function I'k(t), where very particle
may autonomously determine its optimization objective according to its own
personality and intention.

Theorem 2. The algorithm GPMA can dynamically optimize in parallel
the task allocation and resource allocation in MAS in the context of multi-
type coordination, multi-degrce autonomy and multi-objective optimization for
individual agents.

Theorem 3. If the following conditions:

(v>1 (11a)
{1y < wip ol oy Pt <1 (110)
( wikay <v—1 (11c)

remain valid, then equilibrium point of Eq.(6) is stable.
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Theorem 4. If the conditions of the Egs.(11a), (11b), (11c) remain valid,
then every particle of the GPM will converge to a stable equilibrium coordinate
position.

Some simulation results on the optimization of task allocation and resource
assignment in MAS by using the algorithm GPAA are shown as follows.

e The evolutionary process: The transient of personal utilities of all the
particles during executing the algorithm GPMA is shown in Fig.3, which demon-
strates every particle evolves simultaneously to its stable equilibrium state.

e The influence of problem size on utilities and performances: For
the different problem size, the transients of the allocation fairness, aggregate
resource utilization rate and aggregate users’ satisfactory degrec are shown in
Fig.4.

e The comparisons : We further compare the algorithm GPMA with the
famous MMA algorithm that is based on the Marketing Mechanism for resource
assignment and task allocation in MAS. As shown in Fig.5, for different problem
size the GPMA can all converge to a stable equilibrium solution much faster
than the MMA. Morcover, the GPMA exhibits much better performance than
the MMA in terms of the resource utilization rate and users’ satisfactory degree,
whereas they have almost approximately equal allocation fairness.

(a) Initial distribution (b) Intermediate distribution

The number of task agents:40;

The number of resource agents: 40;
The number of particles: 1600;

Task agent demand: 0.5 ~ 1.5;
Resource agent capacity: 0.5 ~ 1.5;
A =0.2, A2 =0.3, AY) =04,
A = 01,01 =2, az =2, £2=0.1,
{ =0, e =0.05.

(c) Final stable distribution

Fig. 3. The utility distributions over all the particles ac the beginning,
intermediate and final stage of executing GPMA.
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(a) For allocation fairness (b) For resource utilization rate and
aggregate users’ satisfactory degree

Fig. 4. For different problem sizes, the transients of the allocation fair-
ness, aggregate resource utilization rate and aggregate users’ satisfactory degree
during executing the algorithm GPMA.

(a) Problem size 20 x 20 (b) Problem size 30 x 30

Fig. 5. For different problem sizes, the performance comparison between
the GPMA and MMA in terms of transients of the allocation fairness, aggregate
resource utilization rate and aggregate users’ satisfactory degree.

4 Conclusions

We draw conclusions as follows:

e The proposed generalized particle approach can effectively solve the prob-
lems in MAS that involve multi-type social coordination, multi-degree autonomy
and multi-objective optimization.

e The proposed generalized particle approach also has the advantages in
terms of parallelism and feasibility for hardware implementation by VLSI tech-
nology.
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